Nuclear Physics

From The Powder Toy
Jump to: navigation, search
Language: English

Work in Progress

Please note this page is under construction

Nuclear Physics

Nuclear physics is the field of physics that studies the constituents and interactions of atomic nuclei. In the scope of this game, is also covers Particle physics, which is a branch of this science that specializes in the subatomic particles that make up nuclei; and Atomic physics, which studies electrons. An atomic nuclei is any type of particle that is make up of smaller particles. If this nuclei can undergo fusion, it is called a fusor.

Forces

Assuming that all options are enabled; there are 3 types of forces in Powder Toy. Altought not directly related to nuclear physics or particles; they provide the essential framework in which nuclear processes can happen.

Gravitational Force

Thermal Energy

Air Pressure

Subatomic Particles

These are the basic constituents of atomic nuclei. All subatomic particles are subject to decay except when they are in their bonded form.

PHOT Photons (γ)

The photon is the basic quanta of light emission. It is created with an initial temperature of 922 degrees with a set speed, the speed of light (3 pixels per frame in a straight line and 2 pixels per frame diagonally) in any of 8 clear directions. All light is emitted in clear lines in an easily recognizable "union jack" like pattern. It's wavelength at creation is entire, and the color will be white. Some matter can change the wavelength of the photon upon it bouncing off it to it's own spectral lines, allowing the visibility of colors and spectrography. It has no electric charge but can be used to generate photo-electricity with silicons.

NEUT Neutrons (n)

They are the quanta of nuclear force and represent half the composition of hydrogen. They are emitted with a variable temperature, which varies from room temperature to off-scale. Their movement creates air pressure; which is an important part in nuclear processes. Neutrons are emitted, unlike light, in a isotropically random pattern.

ELEC Electrons (e−)

Electrons are much more similar to neutrons than to photons. They are the carrier of electrical force and can travel through conductive matter to be usable as electricity. They represent the other half, with neutrons, of the composition of hydrogen. They are emitted isotropically with a temperature of 222 degrees. WARP will generate super heated electrons when its tmp2 above 0; usually when created from an EXOT reaction. The reaction will generate enough heat and pressure to start a fusion reaction.

PROT Protons (p+)

They are another half of hydrogen in replacement of neutrons. Their movement is the same as photons and creates negative air pressure. They can pass through many substances; leaving large amounts of heat behind. It is good for DEUT reactions, but for fusion it is not because of how it generates negative pressure, and that the fusion process creates neutrons instead of protons.

Atomic Nuclei

Fusion Matter

Fusion matter is defined as gasses which can undergo nuclear fusion, these are HYGN, NBLE,CO2 and OXYG.

HYGN Hydrogen

Hydrogen is created when ELEC and NEUT or ELEC and PROT come in contact, it is also created during the electrolysis of WATR with IRON (with SPRK passed through it). When hydrogen is over 50 pressure and heated to over 2,000 degrees, it will undergo fusion and transform into NBLE and release one NEUT, one yellow PHOT, and have a 10% chance of releasing one ELEC. It will also generate one particle of PLSM, add 30 pressure, and raise its own temperature by 1000±250 °C.

NBLE Noble Gas

Noble gas is a special type of gas that turns into plasma when electrified. When NBLE is at 100 pressure and heated to 5,000 degrees, it will transform into PLSM and will also release 1 NEUT, 1 PHOT (colored red), and 1 particle of CO2. It will also generate 50 pressure and raise the surrounding temperature to 9,000 degrees. NBLE created by fusion can carry an electric charge without being ionized.

CO2 Carbon Dioxide

When CO2 is at 200 pressure and heated to 9,500 degrees, it will ignite in a large explosion, turning into PLSM and creating a shockwave of the maximum possible temperature and pressure in TPT. It will also release 1 NEUT and 1 OXYG.

OXYG Oxygen

When OXYG is at 250 pressure , heated to 9720 degrees and encoutered with high newtonian gravity , it will fuse itself to molten BMTL and create a shockwave of the maximum possible temperature and pressure in TPT if under the influence of a gravitational well.

Condensed Matter

Condensed Matter is defined as elements that are created from fusion yet cannot undergo nuclear fusion and cannot recombine into fusor matter.

PLSM Plasma

Plasma is an ionized state of matter similar to a gas.

BHOL Black Hole and SING Singularity

Black hole and singularity are created when a lot of particles are compressed into a 1 pixel area.

BRMT Broken Metal

Created by fusion of oxygen in a gravitational well, in molten form

Fusion

In nuclear physics, nuclear fusion is a nuclear reaction in which two or more atomic nuclei join together, or "fuse", to form a single heavier nucleus. During this process, matter is not conserved because some of the mass of the fusing nuclei is converted to energy which is released. All nuclear fusion is characterized by three things. The emission of the three base subatomic particles (NEUT, PHOT, ELEC), an air pressure field shockwave, emission of plasma (PLSM) and finally the creation, from the fusor, of a heavier nucleus.

Fusion cycle

The fusion cycle is defined as HYGNNBLECO2OXYG → Molten BRMT. Each step of the cycle is associated with greater levels of energy required to fuse the nucleus and greater energy release at fusion. The final process of turning OXYG into Molten BRMT requires a gravitational force.

Fusion energy thresholds

Theories